Duality in H Cone Optimization

نویسنده

  • ANDREY GHULCHAK
چکیده

Positive real cones in the space H∞ appear naturally in many optimization problems of control theory and signal processing. Although such problems can be solved by finite-dimensional approximations (e.g. Ritz projection), all such approximations are conservative, providing one-sided bounds for the optimal value. In order to obtain both upper and lower bounds of the optimal value, a dual problem approach is developed in this paper. A finite-dimensional approximation of the dual problem gives the opposite bound for the optimal value. Thus, by combining the primal and dual problems, a suboptimal solution to the original problem can be found with any required accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones‎

In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...

متن کامل

WEAK AND STRONG DUALITY THEOREMS FOR FUZZY CONIC OPTIMIZATION PROBLEMS

The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality t...

متن کامل

Exact duality for optimization over symmetric cones

We present a strong duality theory for optimization problems over symmetric cones without assuming any constraint qualification. We show important complexity implications of the result to semidefinite and second order conic optimization. The result is an application of Borwein and Wolkowicz’s facial reduction procedure to express the minimal cone. We use Pataki’s simplified analysis and provide...

متن کامل

Duality for vector optimization problems via a general scalarization

Considering a vector optimization problem to which properly efficient solutions are defined by using convex cone-monotone scalarization functions, we attach to it, by means of perturbation theory, new vector duals. When the primal problem, the scalarization function and the perturbation function are particularized, different dual vector problems are obtained, some of them already known in the l...

متن کامل

New Constraint Qualification and Conjugate Duality for Composed Convex Optimization Problems

We present a new constraint qualification which guarantees strong duality between a cone-constrained convex optimization problem and its Fenchel-Lagrange dual. This result is applied to a convex optimization problem having, for a given nonempty convex cone K , as objective function a K-convex function postcomposed with a K-increasing convex function. For this so-called composed convex optimizat...

متن کامل

Duality for second-order symmetric multiobjective programming with cone constraints

In this paper, a new pair of Mond-Weir type multiobjective second-order symmetric dual models with cone constraints is formulated in which the objective function is optimised with respect to an arbitrary closed convex cone. Usual duality relations are further established under K-η-bonvexity/second-order symmetric dual K-H-convexity assumptions. A nontrivial example has also been illustrated to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007